Programming SPI

SPI Driver Access

The WinCE demo image includes the SPI driver, which allows direct access to SSP1 functionality (which is SPI port 1).

EM-X270 has two SPI ports, which are labeled as SSPs. SSP1 is used to communicate with the LCD controller, which is included in the evaluation kit. SSP2 is used to communicate with the WLAN card. SSP1 can be used, though, when using it keep in mind that it shares the port with the LCD controller.

To familiarize with SPI hardware functionality, it is recommended that you read Chapter 8 in the Intel® PXA27x Processor Family Developer’s Manual, available for downloading at Marvell’s Extranet website: https://www.marvell.com/extranet/index.do
The SPI driver is a stream driver that can be accessed using the “SPI” prefix.

To hide the implementation details the following interface is defined (in “spi.h”) for SPI’s access:

· HANDLE SPIUserOpen ()

Creates the SPI device handle that is used in all other functions.

· VOID SPIUserClose (HANDLE hDevice)

Deletes the SPI device handle.

· BOOL SPIUserTransact (HANDLE hDevice, SPITRANS* pTrans)
Asks the driver to make the transaction defined in pTrans.

pTrans is discussed below.

· BOOL SPIUserSetConfiguration(HANDLE hDevice, SPI_SLAVE_CONFIG* Settings)
Registers the configuration of the device. Actual SET of the configuration is done internally in the driver, before Tx/Rx commences. The driver remembers this configuration until this function is called again, or until the device closes the handle to SPI.

SPI_SLAVE_CONFIG struct is discussed below.

· SPITRANS struct
typedef struct _SPITransaction

{

 /* input: */

DWORD
mTransactions;

DWORD
*mWriteBuffer;

/* output: */

DWORD
*mReadBuffer;

} SPITRANS;

 mTransactions – defines the number of data frames the port will send and collect. Each

time you make a call to SPIUserTransact, the clock will toggle for

mTransactions*dwDataSize times (as defined in SPI_SLAVE_CONFIG struct).

CS asserts at the start of SPIUserTransact call, and deasserts before leaving this

function.
 NOTE:The following buffers need to be allocated and released by the user:

*mWriteBuffer – holds the information needed to be wrriten to the device. If , for example,

dwDataSize = 17 (as defined in SPIUserSetHWSettings), then in the 1st transaction

mWriteBuffer[0] is accessed even though it is a DWORD, only the lowest 17 bits of it will

be sent on the bus, MSB first. In order to send 34 bits you will need 2 transactions in this

configuration.

 *mReadBuffer – holds the received information from the device. First transaction is stored in

mReadBuffer[0] and so on.
· SPI_SLAVE_CONFIG struct
typedef struct{

DWORD
dwDataSize;

DWORD
dwClockRate;

POLARITY
ClockPol;

POLARITY
ChipSelectPol;

BOOL
bTxTristate;

BOOL
ClkPhaseHalfCycle;

BOOL
bCSExternal;

DWORD
dwGpioNum;

}
SPI_SLAVE_CONFIG;

dwDataSize – is the size of each data frame in bits, must be between 4 and 32.

dwClockRate – port frequency specified in KHz, should be between 4 and 13*1024 (13MHz).

ClockPol – Clock polarity, accepts the values INACTIVE_LOW/ INACTIVE_HIGH. Specifies

how the clock should behave before a transaction.

 ChipSelectPol – Chip Select polarity, accepts the same values as clock polarity. Specifies

how the CS behaves while inactive.

 bTxTristate – specifies if the Tx line which exits the PXA processor is TriStated while CS is

inactive. TRUE sets it to be tristated, and FALSE means it will be left low.

 ClkPhaseHalfCycle – Defines the relationship between the clk and CS. If set to TRUE, there

is a phase of half a clock cycle from the moment CS asserts until the clock starts

toggling. If set to FALSE, the phase is of a full clock cycle.

NOTE: In manual mode where the CS is a standard GPIO there is little meaning to this signal, because the driver cannot control the timing at such a low resolution. When in manual mode there is usually a delay of 1-3 ms between CS assert and the toggling of the clock.

 bCSExternal – This determines MANUAL/AUTO mode for the CS. If set to FALSE the CS is

controlled by the microcontroller of the SPI port, inside the PXA. If set to TRUE then one

of the GPIOs (as configured in dwGpioNum) is toggled by the driver as CS.

 dwGpioNum – The number of the GPIO to be used by the driver as CS. Only valid if

bCSExternal is TRUE.

How the Driver Works

The driver supports the option to connect several devices to the same port. When connecting several devices to the same port, it is up to the user to supply a separate CS for each device and to make sure no SPI bus starvation occurs.

After aquiring a handle to the SPI driver, each device must register a configuration before it is allowed to transact using the port. Only the last registered configuration is saved by the driver.

When the driver submits a transaction the driver tries to acquire the hardware. If the hardware is already in use the driver will be blocked until the hardware is released (and thus the call to the transaction will be blocked as well). Once the driver acquires the hardware it performs the whole transaction, and only when it finishes does it release the hardware again.

The call for the transaction is then given a TRUE/FALSE indication for the success of the transaction.

SPI Sample Application

Connecting the device to EM-X270:

· Connection to SSP1 is done through the “EXTENDER BOARD CONNECTOR” (P3) , the following table describes the pins which will be needed:

	Pin Number
	Signal name

	2
	SSP1_TXD

	3
	SSP1_RXD

	4
	SSP1_CLK

	5
	SSP1_SFRM

This SPI Sample application illustrates the workflow with a basic SPI device:

· How to configure SPI interface according to a device’s manual.

· How to configure a SPI transaction and send it.

NOTE:

There are 2 ways to perform the transactions with this device:

1. Configure the data frame to 8 bits each so that each DWORD in the read/write buffers will only hold 8 valid bits (the lower ones – the rest will be regarded as zeros).

2. Configure the data frame to 16 bits each so that each DWORD in the read/write buffers will only hold 16 valid bits (the lower ones – the rest will be regarded as zeros).

This was done just as a demonstration. Usually, the user will want to configure data frame size to be as large as possible in order to make better use of the buffers.

This program was written for the DS1722 thermometer (Maxim Semiconductor). The manual is available at: http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2766/t/al
The SPI Sample performs the following actions:

· Configures the SPI to work with the desired clock frequency (5KHz in this case) and to work with an inverted SFRM signal.

· Reads the temperature measurement.

· Writes to the configuration register.

· Reads from the configuration register to validate the write action.
